
Now we understand that procedures are executed in depth-first manner, thus stack allocation is the best suitable form ofNow we understand that procedures are executed in depth-first manner, thus stack allocation is the best suitable form of
storage for procedure activations.storage for procedure activations.

Storage AllocationStorage Allocation

Runtime environment manages runtime memory requirements for the following entities:Runtime environment manages runtime memory requirements for the following entities:

CodeCode : It is known as the text part of a program that does not change at runtime. Its memory requirements are : It is known as the text part of a program that does not change at runtime. Its memory requirements are
known at the compile time.known at the compile time.

ProceduresProcedures : Their text part is static but they are called in a random manner. That is why, stack storage is used : Their text part is static but they are called in a random manner. That is why, stack storage is used
to manage procedure calls and activations.to manage procedure calls and activations.

VariablesVariables : Variables are known at the runtime only, unless they are global or constant. Heap memory : Variables are known at the runtime only, unless they are global or constant. Heap memory
allocation scheme is used for managing allocation and de-allocation of memory for variables in runtime.allocation scheme is used for managing allocation and de-allocation of memory for variables in runtime.

Static AllocationStatic Allocation

In this allocation scheme, the compilation data is bound to a fixed location in the memory and it does not change whenIn this allocation scheme, the compilation data is bound to a fixed location in the memory and it does not change when
the program executes. As the memory requirement and storage locations are known in advance, runtime supportthe program executes. As the memory requirement and storage locations are known in advance, runtime support
package for memory allocation and de-allocation is not required.package for memory allocation and de-allocation is not required.

Stack AllocationStack Allocation

Procedure calls and their activations are managed by means of stack memory allocation. It works in last-in-first-outProcedure calls and their activations are managed by means of stack memory allocation. It works in last-in-first-out
(LIFO) method and this allocation strategy is very useful for recursive procedure calls.(LIFO) method and this allocation strategy is very useful for recursive procedure calls.

Heap AllocationHeap Allocation

Variables local to a procedure are allocated and de-allocated only at runtime. Heap allocation is used to dynamicallyVariables local to a procedure are allocated and de-allocated only at runtime. Heap allocation is used to dynamically
allocate memory to the variables and claim it back when the variables are no more required.allocate memory to the variables and claim it back when the variables are no more required.

Except statically allocated memory area, both stack and heap memory can grow and shrink dynamically andExcept statically allocated memory area, both stack and heap memory can grow and shrink dynamically and
unexpectedly. Therefore, they cannot be provided with a fixed amount of memory in the system.unexpectedly. Therefore, they cannot be provided with a fixed amount of memory in the system.

As shown in the image above, the text part of the code is allocated a fixed amount of memory. Stack and heap memoryAs shown in the image above, the text part of the code is allocated a fixed amount of memory. Stack and heap memory
are arranged at the extremes of total memory allocated to the program. Both shrink and grow against each other.are arranged at the extremes of total memory allocated to the program. Both shrink and grow against each other.

Parameter PassingParameter Passing

The communication medium among procedures is known as parameter passing. The values of the variables from aThe communication medium among procedures is known as parameter passing. The values of the variables from a
calling procedure are transferred to the called procedure by some mechanism. Before moving ahead, first go throughcalling procedure are transferred to the called procedure by some mechanism. Before moving ahead, first go through
some basic terminologies pertaining to the values in a program.some basic terminologies pertaining to the values in a program.

r-valuer-value

The value of an expression is called its r-value. The value contained in a single variable also becomes an r-value if itThe value of an expression is called its r-value. The value contained in a single variable also becomes an r-value if it
appears on the right-hand side of the assignment operator. r-values can always be assigned to some other variable.appears on the right-hand side of the assignment operator. r-values can always be assigned to some other variable.

l-valuel-value

The location of memory (address) where an expression is stored is known as the l-value of that expression. It alwaysThe location of memory (address) where an expression is stored is known as the l-value of that expression. It always
appears at the left hand side of an assignment operator.appears at the left hand side of an assignment operator.

For example:For example:

day day == 11;;
week week == day day ** 77;;
month month == 11;;
year year == month month ** 1212;;

From this example, we understand that constant values like 1, 7, 12, and variables like day, week, month and year, allFrom this example, we understand that constant values like 1, 7, 12, and variables like day, week, month and year, all
have r-values. Only variables have l-values as they also represent the memory location assigned to them.have r-values. Only variables have l-values as they also represent the memory location assigned to them.

For example:For example:

77 == x x ++ y y;;

is an l-value error, as the constant 7 does not represent any memory location.is an l-value error, as the constant 7 does not represent any memory location.

Formal ParametersFormal Parameters

Variables that take the information passed by the caller procedure are called formal parameters. These variables areVariables that take the information passed by the caller procedure are called formal parameters. These variables are
declared in the definition of the called function.declared in the definition of the called function.

Actual ParametersActual Parameters

Variables whose values or addresses are being passed to the called procedure are called actual parameters. TheseVariables whose values or addresses are being passed to the called procedure are called actual parameters. These
variables are specified in the function call as arguments.variables are specified in the function call as arguments.

Example:Example:

fun_onefun_one()()
{{
 intint actual_parameter actual_parameter == 1010;;
 call fun_two call fun_two((intint actual_parameter actual_parameter););
}}
 fun_two fun_two((intint formal_parameter formal_parameter))
{{
 printprint formal_parameter formal_parameter;;
}}

Formal parameters hold the information of the actual parameter, depending upon the parameter passing techniqueFormal parameters hold the information of the actual parameter, depending upon the parameter passing technique
used. It may be a value or an address.used. It may be a value or an address.

Pass by ValuePass by Value

In pass by value mechanism, the calling procedure passes the r-value of actual parameters and the compiler puts thatIn pass by value mechanism, the calling procedure passes the r-value of actual parameters and the compiler puts that
into the called procedure’s activation record. Formal parameters then hold the values passed by the calling procedure. Ifinto the called procedure’s activation record. Formal parameters then hold the values passed by the calling procedure. If
the values held by the formal parameters are changed, it should have no impact on the actual parameters.the values held by the formal parameters are changed, it should have no impact on the actual parameters.

Pass by ReferencePass by Reference

In pass by reference mechanism, the l-value of the actual parameter is copied to the activation record of the calledIn pass by reference mechanism, the l-value of the actual parameter is copied to the activation record of the called
procedure. This way, the called procedure now has the address (memory location) of the actual parameter and theprocedure. This way, the called procedure now has the address (memory location) of the actual parameter and the
formal parameter refers to the same memory location. Therefore, if the value pointed by the formal parameter isformal parameter refers to the same memory location. Therefore, if the value pointed by the formal parameter is
changed, the impact should be seen on the actual parameter as they should also point to the same value.changed, the impact should be seen on the actual parameter as they should also point to the same value.

Pass by Copy-restorePass by Copy-restore

This parameter passing mechanism works similar to ‘pass-by-reference’ except that the changes to actual parametersThis parameter passing mechanism works similar to ‘pass-by-reference’ except that the changes to actual parameters
are made when the called procedure ends. Upon function call, the values of actual parameters are copied in theare made when the called procedure ends. Upon function call, the values of actual parameters are copied in the
activation record of the called procedure. Formal parameters if manipulated have no real-time effect on actualactivation record of the called procedure. Formal parameters if manipulated have no real-time effect on actual
parameters (as l-values are passed), but when the called procedure ends, the l-values of formal parameters are copiedparameters (as l-values are passed), but when the called procedure ends, the l-values of formal parameters are copied
to the l-values of actual parameters.to the l-values of actual parameters.

Example:Example:

intint y y;;
calling_procedurecalling_procedure()()
{{
 y y == 1010;;
 copy_restore copy_restore((yy);); //l-value of y is passed//l-value of y is passed
 printf y printf y;; //prints 99 //prints 99

}}
copy_restorecopy_restore((intint x x))
{{
 x x == 9999;; // y still has value 10 (unaffected)// y still has value 10 (unaffected)
 y y == 00;; // y is now 0 // y is now 0
}}

When this function ends, the l-value of formal parameter x is copied to the actual parameter y. Even if the value of y isWhen this function ends, the l-value of formal parameter x is copied to the actual parameter y. Even if the value of y is
changed before the procedure ends, the l-value of x is copied to the l-value of y making it behave like call by reference.changed before the procedure ends, the l-value of x is copied to the l-value of y making it behave like call by reference.

Pass by NamePass by Name

Languages like Algol provide a new kind of parameter passing mechanism that works like preprocessor in C language.Languages like Algol provide a new kind of parameter passing mechanism that works like preprocessor in C language.
In pass by name mechanism, the name of the procedure being called is replaced by its actual body. Pass-by-nameIn pass by name mechanism, the name of the procedure being called is replaced by its actual body. Pass-by-name
textually substitutes the argument expressions in a procedure call for the corresponding parameters in the body of thetextually substitutes the argument expressions in a procedure call for the corresponding parameters in the body of the
procedure so that it can now work on actual parameters, much like pass-by-reference.procedure so that it can now work on actual parameters, much like pass-by-reference.

Compiler Design - Symbol TableCompiler Design - Symbol Table

Symbol table is an important data structure created and maintained by compilers in order to store information about theSymbol table is an important data structure created and maintained by compilers in order to store information about the
occurrence of various entities such as variable names, function names, objects, classes, interfaces, etc. Symbol table isoccurrence of various entities such as variable names, function names, objects, classes, interfaces, etc. Symbol table is
used by both the analysis and the synthesis parts of a compiler.used by both the analysis and the synthesis parts of a compiler.

A symbol table may serve the following purposes depending upon the language in hand:A symbol table may serve the following purposes depending upon the language in hand:

To store the names of all entities in a structured form at one place.To store the names of all entities in a structured form at one place.

To verify if a variable has been declared.To verify if a variable has been declared.

To implement type checking, by verifying assignments and expressions in the source code are semanticallyTo implement type checking, by verifying assignments and expressions in the source code are semantically
correct.correct.

To determine the scope of a name (scope resolution).To determine the scope of a name (scope resolution).

A symbol table is simply a table which can be either linear or a hash table. It maintains an entry for each name in theA symbol table is simply a table which can be either linear or a hash table. It maintains an entry for each name in the
following format:following format:

<symbol<symbol namename, , typetype, , attributeattribute>>

For example, if a symbol table has to store information about the following variable declaration:For example, if a symbol table has to store information about the following variable declaration:

staticstatic intint interest interest;;

then it should store the entry such as:then it should store the entry such as:

<interest<interest, , intint, , staticstatic>>

The attribute clause contains the entries related to the name.The attribute clause contains the entries related to the name.

ImplementationImplementation

If a compiler is to handle a small amount of data, then the symbol table can be implemented as an unordered list, whichIf a compiler is to handle a small amount of data, then the symbol table can be implemented as an unordered list, which
is easy to code, but it is only suitable for small tables only. A symbol table can be implemented in one of the followingis easy to code, but it is only suitable for small tables only. A symbol table can be implemented in one of the following
ways:ways:

Linear (sorted or unsorted) listLinear (sorted or unsorted) list

Binary Search TreeBinary Search Tree

Hash tableHash table

Among all, symbol tables are mostly implemented as hash tables, where the source code symbol itself is treated as aAmong all, symbol tables are mostly implemented as hash tables, where the source code symbol itself is treated as a
key for the hash function and the return value is the information about the symbol.key for the hash function and the return value is the information about the symbol.

OperationsOperations

A symbol table, either linear or hash, should provide the following operations.A symbol table, either linear or hash, should provide the following operations.

insert()insert()

This operation is more frequently used by analysis phase, i.e., the first half of the compiler where tokens are identifiedThis operation is more frequently used by analysis phase, i.e., the first half of the compiler where tokens are identified
and names are stored in the table. This operation is used to add information in the symbol table about unique namesand names are stored in the table. This operation is used to add information in the symbol table about unique names
occurring in the source code. The format or structure in which the names are stored depends upon the compiler in hand.occurring in the source code. The format or structure in which the names are stored depends upon the compiler in hand.

An attribute for a symbol in the source code is the information associated with that symbol. This information contains theAn attribute for a symbol in the source code is the information associated with that symbol. This information contains the
value, state, scope, and type about the symbol. The insert() function takes the symbol and its attributes as argumentsvalue, state, scope, and type about the symbol. The insert() function takes the symbol and its attributes as arguments
and stores the information in the symbol table.and stores the information in the symbol table.

For example:For example:

intint a a;;

should be processed by the compiler as:should be processed by the compiler as:

insertinsert((aa,, intint););

lookup()lookup()

lookup() operation is used to search a name in the symbol table to determine:lookup() operation is used to search a name in the symbol table to determine:

if the symbol exists in the table.if the symbol exists in the table.

if it is declared before it is being used.if it is declared before it is being used.

if the name is used in the scope.if the name is used in the scope.

if the symbol is initialized.if the symbol is initialized.

if the symbol declared multiple times.if the symbol declared multiple times.

The format of lookup() function varies according to the programming language. The basic format should match theThe format of lookup() function varies according to the programming language. The basic format should match the
following:following:

lookuplookup((symbolsymbol))

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the symbol exists in the symbol table, itThis method returns 0 (zero) if the symbol does not exist in the symbol table. If the symbol exists in the symbol table, it
returns its attributes stored in the table.returns its attributes stored in the table.

Scope ManagementScope Management

A compiler maintains two types of symbol tables: a A compiler maintains two types of symbol tables: a global symbol tableglobal symbol table which can be accessed by all the procedures which can be accessed by all the procedures
and and scope symbol tablesscope symbol tables that are created for each scope in the program. that are created for each scope in the program.

To determine the scope of a name, symbol tables are arranged in hierarchical structure as shown in the example below:To determine the scope of a name, symbol tables are arranged in hierarchical structure as shown in the example below:

..
intint valuevalue==1010;;

voidvoid pro_one pro_one()()
 {{
 intint one_1 one_1;;
 intint one_2 one_2;;

 {{ \ \
 intint one_3 one_3;; ||_ inner scope _ inner scope 11

 intint one_4 one_4;; ||
 }} //

 intint one_5 one_5;;

 {{ \ \
 intint one_6 one_6;; ||_ inner scope _ inner scope 22
 intint one_7 one_7;; ||
 }} //
 }}

voidvoid pro_two pro_two()()
 {{
 intint two_1 two_1;;
 intint two_2 two_2;;

 {{ \ \
 intint two_3 two_3;; ||_ inner scope _ inner scope 33
 intint two_4 two_4;; ||
 }} //

 intint two_5 two_5;;
 }}
..

The above program can be represented in a hierarchical structure of symbol tables:The above program can be represented in a hierarchical structure of symbol tables:

The global symbol table contains names for one global variable (int value) and two procedure names, which should beThe global symbol table contains names for one global variable (int value) and two procedure names, which should be
available to all the child nodes shown above. The names mentioned in the pro_one symbol table (and all its child tables)available to all the child nodes shown above. The names mentioned in the pro_one symbol table (and all its child tables)
are not available for pro_two symbols and its child tables.are not available for pro_two symbols and its child tables.

This symbol table data structure hierarchy is stored in the semantic analyzer and whenever a name needs to beThis symbol table data structure hierarchy is stored in the semantic analyzer and whenever a name needs to be
searched in a symbol table, it is searched using the following algorithm:searched in a symbol table, it is searched using the following algorithm:

first a symbol will be searched in the current scope, i.e. current symbol table.first a symbol will be searched in the current scope, i.e. current symbol table.

if a name is found, then search is completed, else it will be searched in the parent symbol table until,if a name is found, then search is completed, else it will be searched in the parent symbol table until,

either the name is found or global symbol table has been searched for the name.either the name is found or global symbol table has been searched for the name.

Compiler - Intermediate Code GenerationCompiler - Intermediate Code Generation

A source code can directly be translated into its target machine code, then why at all we need to translate the sourceA source code can directly be translated into its target machine code, then why at all we need to translate the source
code into an intermediate code which is then translated to its target code? Let us see the reasons why we need ancode into an intermediate code which is then translated to its target code? Let us see the reasons why we need an
intermediate code.intermediate code.

If a compiler translates the source language to its target machine language without having the option forIf a compiler translates the source language to its target machine language without having the option for
generating intermediate code, then for each new machine, a full native compiler is required.generating intermediate code, then for each new machine, a full native compiler is required.

Intermediate code eliminates the need of a new full compiler for every unique machine by keeping the analysisIntermediate code eliminates the need of a new full compiler for every unique machine by keeping the analysis
portion same for all the compilers.portion same for all the compilers.

The second part of compiler, synthesis, is changed according to the target machine.The second part of compiler, synthesis, is changed according to the target machine.

It becomes easier to apply the source code modifications to improve code performance by applying codeIt becomes easier to apply the source code modifications to improve code performance by applying code
optimization techniques on the intermediate code.optimization techniques on the intermediate code.

Intermediate RepresentationIntermediate Representation

Intermediate codes can be represented in a variety of ways and they have their own benefits.Intermediate codes can be represented in a variety of ways and they have their own benefits.

High Level IRHigh Level IR - High-level intermediate code representation is very close to the source language itself. They - High-level intermediate code representation is very close to the source language itself. They
can be easily generated from the source code and we can easily apply code modifications to enhancecan be easily generated from the source code and we can easily apply code modifications to enhance
performance. But for target machine optimization, it is less preferred.performance. But for target machine optimization, it is less preferred.

Low Level IRLow Level IR - This one is close to the target machine, which makes it suitable for register and memory - This one is close to the target machine, which makes it suitable for register and memory
allocation, instruction set selection, etc. It is good for machine-dependent optimizations.allocation, instruction set selection, etc. It is good for machine-dependent optimizations.

Intermediate code can be either language specific (e.g., Byte Code for Java) or language independent (three-addressIntermediate code can be either language specific (e.g., Byte Code for Java) or language independent (three-address
code).code).

Three-Address CodeThree-Address Code

Intermediate code generator receives input from its predecessor phase, semantic analyzer, in the form of an annotatedIntermediate code generator receives input from its predecessor phase, semantic analyzer, in the form of an annotated
syntax tree. That syntax tree then can be converted into a linear representation, e.g., postfix notation. Intermediate codesyntax tree. That syntax tree then can be converted into a linear representation, e.g., postfix notation. Intermediate code
tends to be machine independent code. Therefore, code generator assumes to have unlimited number of memorytends to be machine independent code. Therefore, code generator assumes to have unlimited number of memory
storage (register) to generate code.storage (register) to generate code.

For example:For example:

a a == b b ++ c c ** d d;;

The intermediate code generator will try to divide this expression into sub-expressions and then generate theThe intermediate code generator will try to divide this expression into sub-expressions and then generate the
corresponding code.corresponding code.

r1 r1 == c c ** d d;;
r2 r2 == b b ++ r1 r1;;
a a == r2 r2

r being used as registers in the target program.r being used as registers in the target program.

A three-address code has at most three address locations to calculate the expression. A three-address code can beA three-address code has at most three address locations to calculate the expression. A three-address code can be
represented in two forms : quadruples and triples.represented in two forms : quadruples and triples.

QuadruplesQuadruples

Each instruction in quadruples presentation is divided into four fields: operator, arg1, arg2, and result. The aboveEach instruction in quadruples presentation is divided into four fields: operator, arg1, arg2, and result. The above
example is represented below in quadruples format:example is represented below in quadruples format:

OpOp argarg argarg resultresult

** cc dd r1r1

++ bb r1r1 r2r2

++ r2r2 r1r1 r3r3

== r3r3 aa

TriplesTriples

Each instruction in triples presentation has three fields : op, arg1, and arg2.The results of respective sub-expressionsEach instruction in triples presentation has three fields : op, arg1, and arg2.The results of respective sub-expressions
are denoted by the position of expression. Triples represent similarity with DAG and syntax tree. They are equivalent toare denoted by the position of expression. Triples represent similarity with DAG and syntax tree. They are equivalent to
DAG while representing expressions.DAG while representing expressions.

OpOp argarg argarg

** cc dd

++ bb (0)(0)

++ (1)(1) (0)(0)

== (2)(2)

Triples face the problem of code immovability while optimization, as the results are positional and changing the order orTriples face the problem of code immovability while optimization, as the results are positional and changing the order or
position of an expression may cause problems.position of an expression may cause problems.

Indirect TriplesIndirect Triples

This representation is an enhancement over triples representation. It uses pointers instead of position to store results.This representation is an enhancement over triples representation. It uses pointers instead of position to store results.
This enables the optimizers to freely re-position the sub-expression to produce an optimized code.This enables the optimizers to freely re-position the sub-expression to produce an optimized code.

DeclarationsDeclarations

A variable or procedure has to be declared before it can be used. Declaration involves allocation of space in memoryA variable or procedure has to be declared before it can be used. Declaration involves allocation of space in memory
and entry of type and name in the symbol table. A program may be coded and designed keeping the target machineand entry of type and name in the symbol table. A program may be coded and designed keeping the target machine
structure in mind, but it may not always be possible to accurately convert a source code to its target language.structure in mind, but it may not always be possible to accurately convert a source code to its target language.

Taking the whole program as a collection of procedures and sub-procedures, it becomes possible to declare all theTaking the whole program as a collection of procedures and sub-procedures, it becomes possible to declare all the
names local to the procedure. Memory allocation is done in a consecutive manner and names are allocated to memorynames local to the procedure. Memory allocation is done in a consecutive manner and names are allocated to memory
in the sequence they are declared in the program. We use offset variable and set it to zero {offset = 0} that denote thein the sequence they are declared in the program. We use offset variable and set it to zero {offset = 0} that denote the
base address.base address.

The source programming language and the target machine architecture may vary in the way names are stored, soThe source programming language and the target machine architecture may vary in the way names are stored, so
relative addressing is used. While the first name is allocated memory starting from the memory location 0 {offset=0}, therelative addressing is used. While the first name is allocated memory starting from the memory location 0 {offset=0}, the
next name declared later, should be allocated memory next to the first one.next name declared later, should be allocated memory next to the first one.

Example:Example:

11 22

11 22

We take the example of C programming language where an integer variable is assigned 2 bytes of memory and a floatWe take the example of C programming language where an integer variable is assigned 2 bytes of memory and a float
variable is assigned 4 bytes of memory.variable is assigned 4 bytes of memory.

intint a a;;
floatfloat b b;;
AllocationAllocation process process::
{{offset offset == 00}}
intint a a;;
idid..type type == intint
idid..width width == 22
offset offset == offset offset ++ id id..width width
{{offset offset == 22}}
floatfloat b b;;
 id id..type type == floatfloat
 id id..width width == 44
 offset offset == offset offset ++ id id..width width
{{offset offset == 66}}

To enter this detail in a symbol table, a procedure To enter this detail in a symbol table, a procedure enterenter can be used. This method may have the following structure: can be used. This method may have the following structure:

enterenter((namename,, type type,, offset offset))

This procedure should create an entry in the symbol table, for variable This procedure should create an entry in the symbol table, for variable namename, having its type set to type and relative, having its type set to type and relative
address address offsetoffset in its data area. in its data area.

Compiler Design - Code GenerationCompiler Design - Code Generation

Code generation can be considered as the final phase of compilation. Through post code generation, optimizationCode generation can be considered as the final phase of compilation. Through post code generation, optimization
process can be applied on the code, but that can be seen as a part of code generation phase itself. The code generatedprocess can be applied on the code, but that can be seen as a part of code generation phase itself. The code generated
by the compiler is an object code of some lower-level programming language, for example, assembly language. Weby the compiler is an object code of some lower-level programming language, for example, assembly language. We
have seen that the source code written in a higher-level language is transformed into a lower-level language that resultshave seen that the source code written in a higher-level language is transformed into a lower-level language that results
in a lower-level object code, which should have the following minimum properties:in a lower-level object code, which should have the following minimum properties:

It should carry the exact meaning of the source code.It should carry the exact meaning of the source code.

It should be efficient in terms of CPU usage and memory management.It should be efficient in terms of CPU usage and memory management.

We will now see how the intermediate code is transformed into target object code (assembly code, in this case).We will now see how the intermediate code is transformed into target object code (assembly code, in this case).

Directed Acyclic GraphDirected Acyclic Graph

Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps to see the flow of values flowingDirected Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps to see the flow of values flowing
among the basic blocks, and offers optimization too. DAG provides easy transformation on basic blocks. DAG can beamong the basic blocks, and offers optimization too. DAG provides easy transformation on basic blocks. DAG can be
understood here:understood here:

Leaf nodes represent identifiers, names or constants.Leaf nodes represent identifiers, names or constants.

Interior nodes represent operators.Interior nodes represent operators.

Interior nodes also represent the results of expressions or the identifiers/name where the values are to beInterior nodes also represent the results of expressions or the identifiers/name where the values are to be
stored or assigned.stored or assigned.

Example:Example:

tt == a a ++ b b
tt == t t ++ c c
d d == t t ++ t t

00

11 00

00 11

[t[t = a + b] = a + b]

[t[t = t = t + c] + c]

[d = t[d = t + t + t]]

Peephole OptimizationPeephole Optimization

This optimization technique works locally on the source code to transform it into an optimized code. By locally, we meanThis optimization technique works locally on the source code to transform it into an optimized code. By locally, we mean
a small portion of the code block at hand. These methods can be applied on intermediate codes as well as on targeta small portion of the code block at hand. These methods can be applied on intermediate codes as well as on target
codes. A bunch of statements is analyzed and are checked for the following possible optimization:codes. A bunch of statements is analyzed and are checked for the following possible optimization:

Redundant instruction eliminationRedundant instruction elimination

At source code level, the following can be done by the user:At source code level, the following can be done by the user:

intint add_ten add_ten((intint x x))
 {{
 intint y y,, z z;;
 y y == 1010;;
 z z == x x ++ y y;;
 returnreturn z z;;
 }}

intint add_ten add_ten((intint x x))
 {{
 intint y y;;
 y y == 1010;;
 y y == x x ++ y y;;
 returnreturn y y;;
 }}

intint add_ten add_ten((intint x x))
 {{
 intint y y == 1010;;
 returnreturn x x ++ y y;;
 }}

intint add_ten add_ten((intint x x))
 {{
 returnreturn x x ++ 1010;;
 }}

At compilation level, the compiler searches for instructions redundant in nature. Multiple loading and storing ofAt compilation level, the compiler searches for instructions redundant in nature. Multiple loading and storing of
instructions may carry the same meaning even if some of them are removed. For example:instructions may carry the same meaning even if some of them are removed. For example:

MOV x, R0MOV x, R0

MOV R0, R1MOV R0, R1

We can delete the first instruction and re-write the sentence as:We can delete the first instruction and re-write the sentence as:

MOV xMOV x,, R1 R1

Unreachable codeUnreachable code

Unreachable code is a part of the program code that is never accessed because of programming constructs.Unreachable code is a part of the program code that is never accessed because of programming constructs.
Programmers may have accidently written a piece of code that can never be reached.Programmers may have accidently written a piece of code that can never be reached.

Example:Example:

voidvoid add_ten add_ten((intint x x))
{{
 returnreturn x x ++ 1010;;
 printf printf(“(“valuevalue ofof x x isis %%dd”,”, x x););
}}

In this code segment, the In this code segment, the printfprintf statement will never be executed as the program control returns back before it can statement will never be executed as the program control returns back before it can
execute, hence execute, hence printfprintf can be removed. can be removed.

00

11 00

00 11

Flow of control optimizationFlow of control optimization

There are instances in a code where the program control jumps back and forth without performing any significant task.There are instances in a code where the program control jumps back and forth without performing any significant task.
These jumps can be removed. Consider the following chunk of code:These jumps can be removed. Consider the following chunk of code:

......
MOV R1MOV R1,, R2 R2
GOTO L1GOTO L1
......
L1 L1 :: GOTO L2 GOTO L2
L2 L2 :: INC R1 INC R1

In this code,label L1 can be removed as it In this code,label L1 can be removed as it passes the control to L2. So instead of jumping to L1 and then to L2, thepasses the control to L2. So instead of jumping to L1 and then to L2, the
control can directly reach L2, as shown below:control can directly reach L2, as shown below:

......
MOV R1MOV R1,, R2 R2
GOTO L2GOTO L2
......
L2 L2 :: INC R1 INC R1

Algebraic expression simplificationAlgebraic expression simplification

There are occasions where algebraic expressions can be made simple. For example, the expression There are occasions where algebraic expressions can be made simple. For example, the expression a = a + 0a = a + 0 can be can be
replaced by replaced by aa itself and the expression a = a + 1 can simply be replaced by INC a. itself and the expression a = a + 1 can simply be replaced by INC a.

Strength reductionStrength reduction

There are operations that consume more time and space. Their ‘strength’ can be reduced by replacing them with otherThere are operations that consume more time and space. Their ‘strength’ can be reduced by replacing them with other
operations that consume less time and space, but produce the same result.operations that consume less time and space, but produce the same result.

For example, For example, x * 2x * 2 can be replaced by can be replaced by x << 1x << 1, which involves only one left shift. Though the output of a * a and a, which involves only one left shift. Though the output of a * a and a is is
same, asame, a is much more efficient to implement. is much more efficient to implement.

Accessing machine instructionsAccessing machine instructions

The target machine can deploy more sophisticated instructions, which can have the capability to perform specificThe target machine can deploy more sophisticated instructions, which can have the capability to perform specific
operations much efficiently. If the target code can accommodate those instructions directly, that will not only improve theoperations much efficiently. If the target code can accommodate those instructions directly, that will not only improve the
quality of code, but also yield more efficient results.quality of code, but also yield more efficient results.

Code GeneratorCode Generator

A code generator is expected to have an understanding of the target machine’s runtime environment and its instructionA code generator is expected to have an understanding of the target machine’s runtime environment and its instruction
set. The code generator should take the following things into consideration to generate the code:set. The code generator should take the following things into consideration to generate the code:

Target languageTarget language : The code generator has to be aware of the nature of the target language for which the code : The code generator has to be aware of the nature of the target language for which the code
is to be transformed. That language may facilitate some machine-specific instructions to help the compileris to be transformed. That language may facilitate some machine-specific instructions to help the compiler
generate the code in a more convenient way. The target machine can have either CISC or RISC processorgenerate the code in a more convenient way. The target machine can have either CISC or RISC processor
architecture.architecture.

IR TypeIR Type : Intermediate representation has various forms. It can be in Abstract Syntax Tree (AST) structure, : Intermediate representation has various forms. It can be in Abstract Syntax Tree (AST) structure,
Reverse Polish Notation, or 3-address code.Reverse Polish Notation, or 3-address code.

Selection of instructionSelection of instruction : The code generator takes Intermediate Representation as input and converts : The code generator takes Intermediate Representation as input and converts
(maps) it into target machine’s instruction set. One representation can have many ways (instructions) to convert(maps) it into target machine’s instruction set. One representation can have many ways (instructions) to convert
it, so it becomes the responsibility of the code generator to choose the appropriate instructions wisely.it, so it becomes the responsibility of the code generator to choose the appropriate instructions wisely.

Register allocationRegister allocation : A program has a number of values to be maintained during the execution. The target : A program has a number of values to be maintained during the execution. The target
machine’s architecture may not allow all of the values to be kept in the CPU memory or registers. Codemachine’s architecture may not allow all of the values to be kept in the CPU memory or registers. Code

22

22

generator decides what values to keep in the registers. Also, it decides the registers to be used to keep thesegenerator decides what values to keep in the registers. Also, it decides the registers to be used to keep these
values.values.

Ordering of instructionsOrdering of instructions : At last, the code generator decides the order in which the instruction will be : At last, the code generator decides the order in which the instruction will be
executed. It creates schedules for instructions to execute them.executed. It creates schedules for instructions to execute them.

DescriptorsDescriptors

The code generator has to track both the registers (for availability) and addresses (location of values) while generatingThe code generator has to track both the registers (for availability) and addresses (location of values) while generating
the code. For both of them, the following two descriptors are used:the code. For both of them, the following two descriptors are used:

Register descriptorRegister descriptor : Register descriptor is used to inform the code generator about the availability of : Register descriptor is used to inform the code generator about the availability of
registers. Register descriptor keeps track of values stored in each register. Whenever a new register is requiredregisters. Register descriptor keeps track of values stored in each register. Whenever a new register is required
during code generation, this descriptor is consulted for register availability.during code generation, this descriptor is consulted for register availability.

Address descriptorAddress descriptor : Values of the names (identifiers) used in the program might be stored at different : Values of the names (identifiers) used in the program might be stored at different
locations while in execution. Address descriptors are used to keep track of memory locations where the valueslocations while in execution. Address descriptors are used to keep track of memory locations where the values
of identifiers are stored. These locations may include CPU registers, heaps, stacks, memory or a combinationof identifiers are stored. These locations may include CPU registers, heaps, stacks, memory or a combination
of the mentioned locations.of the mentioned locations.

Code generator keeps both the descriptor updated in real-time. For a load statement, LD R1, x, the code generator:Code generator keeps both the descriptor updated in real-time. For a load statement, LD R1, x, the code generator:

updates the Register Descriptor R1 that has value of x andupdates the Register Descriptor R1 that has value of x and
updates the Address Descriptor (x) to show that one instance of x is in R1.updates the Address Descriptor (x) to show that one instance of x is in R1.

Code GenerationCode Generation

Basic blocks comprise of a sequence of three-address instructions. Code generator takes these sequence ofBasic blocks comprise of a sequence of three-address instructions. Code generator takes these sequence of
instructions as input.instructions as input.

NoteNote : If the value of a name is found at more than one place (register, cache, or memory), the register’s value will be : If the value of a name is found at more than one place (register, cache, or memory), the register’s value will be
preferred over the cache and main memory. Likewise cache’s value will be preferred over the main memory. Mainpreferred over the cache and main memory. Likewise cache’s value will be preferred over the main memory. Main
memory is barely given any preference.memory is barely given any preference.

getReggetReg : Code generator uses : Code generator uses getReggetReg function to determine the status of available registers and the location of name function to determine the status of available registers and the location of name
values. values. getReggetReg works as follows: works as follows:

If variable Y is already in register R, it uses that register.If variable Y is already in register R, it uses that register.

Else if some register R is available, it uses that register.Else if some register R is available, it uses that register.

Else if both the above options are not possible, it chooses a register that requires minimal number of load andElse if both the above options are not possible, it chooses a register that requires minimal number of load and
store instructions.store instructions.

For an instruction x = y OP z, the code generator may perform the following actions. Let us assume that L is the locationFor an instruction x = y OP z, the code generator may perform the following actions. Let us assume that L is the location
(preferably register) where the output of y OP z is to be saved:(preferably register) where the output of y OP z is to be saved:

Call function getReg, to decide the location of L.Call function getReg, to decide the location of L.

Determine the present location (register or memory) of Determine the present location (register or memory) of yy by consulting the Address Descriptor of by consulting the Address Descriptor of yy. If . If yy is not is not
presently in register presently in register LL, then generate the following instruction to copy the value of , then generate the following instruction to copy the value of yy to to LL::

MOV y’, LMOV y’, L

where where y’y’ represents the copied value of represents the copied value of yy..

Determine the present location of Determine the present location of zz using the same method used in step 2 for using the same method used in step 2 for yy and generate the following and generate the following
instruction:instruction:

OP z’, LOP z’, L

where where z’z’ represents the copied value of represents the copied value of zz..

Now L contains the value of y OP z, that is intended to be assigned to Now L contains the value of y OP z, that is intended to be assigned to xx. So, if L is a register, update its. So, if L is a register, update its
descriptor to indicate that it contains the value of descriptor to indicate that it contains the value of xx. Update the descriptor of . Update the descriptor of xx to indicate that it is stored at to indicate that it is stored at
location location LL..

If y and z has no further use, they can be given back to the system.If y and z has no further use, they can be given back to the system.

Other code constructs like loops and conditional statements are transformed into assembly language in generalOther code constructs like loops and conditional statements are transformed into assembly language in general
assembly way.assembly way.

Compiler Design - Code OptimizationCompiler Design - Code Optimization

Optimization is a program transformation technique, which tries to improve the code by making it consume lessOptimization is a program transformation technique, which tries to improve the code by making it consume less
resources (i.e. CPU, Memory) and deliver high speed.resources (i.e. CPU, Memory) and deliver high speed.

In optimization, high-level general programming constructs are replaced by very efficient low-level programming codes.In optimization, high-level general programming constructs are replaced by very efficient low-level programming codes.
A code optimizing process must follow the three rules given below:A code optimizing process must follow the three rules given below:

The output code must not, in any way, change the meaning of the program.The output code must not, in any way, change the meaning of the program.

Optimization should increase the speed of the program and if possible, the program should demand lessOptimization should increase the speed of the program and if possible, the program should demand less
number of resources.number of resources.

Optimization should itself be fast and should not delay the overall compiling process.Optimization should itself be fast and should not delay the overall compiling process.

Efforts for an optimized code can be made at various levels of compiling the process.Efforts for an optimized code can be made at various levels of compiling the process.

At the beginning, users can change/rearrange the code or use better algorithms to write the code.At the beginning, users can change/rearrange the code or use better algorithms to write the code.

After generating intermediate code, the compiler can modify the intermediate code by address calculations andAfter generating intermediate code, the compiler can modify the intermediate code by address calculations and
improving loops.improving loops.

While producing the target machine code, the compiler can make use of memory hierarchy and CPU registers.While producing the target machine code, the compiler can make use of memory hierarchy and CPU registers.

Optimization can be categorized broadly into two types : machine independent and machine dependent.Optimization can be categorized broadly into two types : machine independent and machine dependent.

Machine-independent OptimizationMachine-independent Optimization

In this optimization, the compiler takes in the intermediate code and transforms a part of the code that does not involveIn this optimization, the compiler takes in the intermediate code and transforms a part of the code that does not involve
any CPU registers and/or absolute memory locations. For example:any CPU registers and/or absolute memory locations. For example:

dodo
{{
 item item == 1010;;
 valuevalue == valuevalue ++ item item;;
}}whilewhile((valuevalue<<100100););

This code involves repeated assignment of the identifier item, which if we put this way:This code involves repeated assignment of the identifier item, which if we put this way:

ItemItem == 1010;;
dodo
{{
 valuevalue == valuevalue ++ item item;;
}} whilewhile((valuevalue<<100100););

should not only save the CPU cycles, but should not only save the CPU cycles, but can be used on any processor.can be used on any processor.

Machine-dependent OptimizationMachine-dependent Optimization

Machine-dependent optimization is done after the target code has been generated and when the code is transformedMachine-dependent optimization is done after the target code has been generated and when the code is transformed
according to the target machine architecture. It involves CPU registers and may have absolute memory referencesaccording to the target machine architecture. It involves CPU registers and may have absolute memory references
rather than relative references. Machine-dependent optimizers put efforts to take maximum advantage of memoryrather than relative references. Machine-dependent optimizers put efforts to take maximum advantage of memory
hierarchy.hierarchy.

Basic BlocksBasic Blocks

Source codes generally have a number of instructions, which are always executed in sequence and are considered asSource codes generally have a number of instructions, which are always executed in sequence and are considered as
the basic blocks of the code. These basic blocks do not have any jump statements among them, i.e., when the firstthe basic blocks of the code. These basic blocks do not have any jump statements among them, i.e., when the first
instruction is executed, all the instructions in the same basic block will be executed in their sequence of appearanceinstruction is executed, all the instructions in the same basic block will be executed in their sequence of appearance
without losing the flow control of the program.without losing the flow control of the program.

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-CASE conditional statementsA program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-CASE conditional statements
and loops such as DO-WHILE, FOR, and REPEAT-UNTIL, etc.and loops such as DO-WHILE, FOR, and REPEAT-UNTIL, etc.

Basic block identificationBasic block identification

We may use the following algorithm to find the basic blocks in a program:We may use the following algorithm to find the basic blocks in a program:

Search header statements of all the basic blocks from where a basic block starts:Search header statements of all the basic blocks from where a basic block starts:

First statement of a program.First statement of a program.

Statements that are target of any branch (conditional/unconditional).Statements that are target of any branch (conditional/unconditional).

Statements that follow any branch statement.Statements that follow any branch statement.

Header statements and the statements following them form a basic block.Header statements and the statements following them form a basic block.

A basic block does not include any header statement of any other basic block.A basic block does not include any header statement of any other basic block.

Basic blocks are important concepts from both code generation and optimization point of view.Basic blocks are important concepts from both code generation and optimization point of view.

Basic blocks play an important role in identifying variables, which are being used more than once in a single basic block.Basic blocks play an important role in identifying variables, which are being used more than once in a single basic block.
If any variable is being used more than once, the register memory allocated to that variable need not be emptied unlessIf any variable is being used more than once, the register memory allocated to that variable need not be emptied unless
the block finishes execution.the block finishes execution.

Control Flow GraphControl Flow Graph

Basic blocks in a program can be represented by means of control flow graphs. A control flow graph depicts how theBasic blocks in a program can be represented by means of control flow graphs. A control flow graph depicts how the
program control is being passed among the blocks. It is a useful tool that helps in optimization by help locating anyprogram control is being passed among the blocks. It is a useful tool that helps in optimization by help locating any
unwanted loops in the program.unwanted loops in the program.

Loop OptimizationLoop Optimization

Most programs run as a loop in the system. It becomes necessary to optimize the loops in order to save CPU cycles andMost programs run as a loop in the system. It becomes necessary to optimize the loops in order to save CPU cycles and
memory. Loops can be optimized by the following techniques:memory. Loops can be optimized by the following techniques:

Invariant codeInvariant code : A fragment of code that resides in the loop and computes the same value at each iteration is : A fragment of code that resides in the loop and computes the same value at each iteration is
called a loop-invariant code. This code can be moved out of the loop by saving it to be computed only once,called a loop-invariant code. This code can be moved out of the loop by saving it to be computed only once,
rather than with each iteration.rather than with each iteration.

Induction analysisInduction analysis : A variable is called an induction variable if its value is altered within the loop by a loop- : A variable is called an induction variable if its value is altered within the loop by a loop-
invariant value.invariant value.

Strength reductionStrength reduction : There are expressions that consume more CPU cycles, time, and memory. These : There are expressions that consume more CPU cycles, time, and memory. These
expressions should be replaced with cheaper expressions without compromising the output of expression. Forexpressions should be replaced with cheaper expressions without compromising the output of expression. For
example, multiplication (x * 2) is expensive in terms of CPU cycles than (x << 1) and yields the same result.example, multiplication (x * 2) is expensive in terms of CPU cycles than (x << 1) and yields the same result.

Dead-code EliminationDead-code Elimination

Dead code is one or more than one code statements, which are:Dead code is one or more than one code statements, which are:

Either never executed or unreachable,Either never executed or unreachable,

Or if executed, their output is never used.Or if executed, their output is never used.

Thus, dead code plays no role in any program operation and therefore it can simply be eliminated.Thus, dead code plays no role in any program operation and therefore it can simply be eliminated.

Partially dead codePartially dead code

There are some code statements whose computed values are used only under certain circumstances, i.e., sometimesThere are some code statements whose computed values are used only under certain circumstances, i.e., sometimes
the values are used and sometimes they are not. Such codes are known as partially dead-code.the values are used and sometimes they are not. Such codes are known as partially dead-code.

The above control flow graph depicts a chunk of program where variable ‘a’ is used to assign the output of expression ‘xThe above control flow graph depicts a chunk of program where variable ‘a’ is used to assign the output of expression ‘x
* y’. Let us assume that the value assigned to ‘a’ is never used inside the loop.Immediately after the control leaves the* y’. Let us assume that the value assigned to ‘a’ is never used inside the loop.Immediately after the control leaves the
loop, ‘a’ is assigned the value of variable ‘z’, which would be used later in the program. We conclude here that theloop, ‘a’ is assigned the value of variable ‘z’, which would be used later in the program. We conclude here that the
assignment code of ‘a’ is never used anywhere, therefore it is eligible to be eliminated.assignment code of ‘a’ is never used anywhere, therefore it is eligible to be eliminated.

Likewise, the picture above depicts that the conditional statement is always false, implying that the code, written in trueLikewise, the picture above depicts that the conditional statement is always false, implying that the code, written in true
case, will never be executed, hence it can be removed.case, will never be executed, hence it can be removed.

Partial RedundancyPartial Redundancy

Redundant expressions are computed more than once in parallel path, without any change in operands.whereas partial-Redundant expressions are computed more than once in parallel path, without any change in operands.whereas partial-
redundant expressions are computed more than once in a path, without any change in operands. For example,redundant expressions are computed more than once in a path, without any change in operands. For example,

[redundant expression][redundant expression] [partially redundant expression][partially redundant expression]

Loop-invariant code is partially redundant and can be eliminated by using a code-motion technique.Loop-invariant code is partially redundant and can be eliminated by using a code-motion technique.

Another example of a partially redundant code can be:Another example of a partially redundant code can be:

IfIf ((conditioncondition))
{{
 a a == y OP z y OP z;;
}}
elseelse
{{

}}
c c == y OP z y OP z;;

We assume that the values of operands (We assume that the values of operands (yy and and zz) are not changed from assignment of variable) are not changed from assignment of variable aa to variable to variable cc. Here, if. Here, if
the condition statement is true, then y OP z is computed twice, otherwise once. Code motion can be used to eliminatethe condition statement is true, then y OP z is computed twice, otherwise once. Code motion can be used to eliminate
this redundancy, as shown below:this redundancy, as shown below:

IfIf ((conditioncondition))
{{

 tmp tmp == y OP z y OP z;;
 a a == tmp tmp;;

}}
elseelse
{{

 tmp tmp == y OP z y OP z;;
}}
c c == tmp tmp;;

Here, whether the condition is true or false; y OP z should be computed only once.Here, whether the condition is true or false; y OP z should be computed only once.

