MCA

(SEM. II) THEORY EXAMINATION

COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. Find the absolute and relative error if the number x = .004997 is rounded off to three decimal digits.
- b. Describe Backward Differences with example.
- c. Prove that $(1 + \Delta) \cdot (1 \nabla) = 1$
- d. Write an iterative formula using Newton-Raphson method to find the square root of a positive number.
- e. Discuss fourth order Runge-Kutta method.
- f. Write short notes on Trapezoidal rule.
- g. Explain Chi-Square test.

SECTION B

2. Attempt any three of the following:

7x3 = 21

- a. Find the root of $xe^x = 2$ correct to four significant digits using Regula-falsi method.
- b. What do you mean by divided difference? Derive Newton's divided formula.
- c. Apply Gauss's forward formula to find the value of u_9 , if $u_0 = 14$, $u_4 = 24$, $u_8 = 32$, $u_{12} = 35$, $u_{16} = 40$
- d. Solve the following equations by using Gauss-Seidal iteration method

$$27x + 6y - z = 85$$
$$6x + 15y + 2z = 72$$

$$x + y + 54z = 110$$

e. Explain all the steps involved in forecasting.

SECTION C

3. Attempt any *one* part of the following:

7x1 = 7

- (a) Find a root of the equation $8x^3 2x 1 = 0$ using Bisection method is four stages.
- (b) Derive an expression for rate of convergence of Secant method.

4. Attempt any *one* part of the following:

7x1 = 7

- (a) Derive the Newton's Backward Interpolation Formula.
- (b) Find $\frac{dy}{dx}$ at x = 6 given that

x	4.5	5.0	5.5	6.0	6.5	7.0	7.5
у	9.69	12.90	16.71	21.18	26.37	32.34	39.15

Printed Pages: 02

5. Attempt any one part of the following:

7x1 = 7

- (a) Solve $\frac{dy}{dx} = 1 + xy$ with $x_0 = 2$, $y_0 = 0$ using Picard's method of successive approximations.
- (b) Use Simpson's $1/3^{rd}$ rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates.

6. Attempt any one part of the following:

7x1 = 7

(a) Obtain a relation of the form $y = ae^{bx}$ for the following data by the method of least squares:

x	1	2	3	4	5	6
y	1.6	4.5	13.8	40.2	125	300

(b) From the given data, obtain the two regression lines using method of least squares:

x	6	2	10	4	8	
y	9	11	5	8	7	

7. Attempt any *one* part of the following:

7x1 = 7

- (a) Define Times Series and explain the utility of time series analysis.
- (b) Describe Moving average method. From the following data, calculate 4 years moving average

Year	1	2	3	4	5	6	7	8	9	10
Output	20	21	23	22	25	24	27	26	28	30